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Abstract— Most analyses of routing vector protocols, such as
the Border Gateway Protocol (BGP), are conducted in the context
of a single destination in a given network. In that context, for
arbitrary routing policies, it is computationally intractable to
determine whether or not a routing vector protocol behaves
correctly. In this paper, we consider the common scenario where
routing policies are specified independently of the destination.
In this scenario, we demonstrate that the correctness of a routing
vector protocol for all destinations in a given network equates to
a property of routing policies around its cycles, designated strict
absorbency, similarly to the way that the correctness of a distance
vector protocol equates to cycles of positive length. A number of
pragmatic conclusions can be derived from this theoretical result.
For example, we show that all next-hop routing policies, which
are popular in inter-domain routing and in the interconnection of
routing instances, cannot fully exploit the physical redundancy of
a network. As another example, we show how sibling autonomous
systems of the Internet can share all routes between them without
introducing oscillations into BGP.

Index Terms— Correctness of routing vector protocols, routing
algebra, inter-domain routing, BGP, routing policies.

I. INTRODUCTION

ROUTING vector protocols are distributed algorithms that
find paths in a network over which data-packets are

subsequently forwarded. These protocols instantiate a separate
computation process for each destination. Such a process starts
when the destination originates a route that it sends to all its
neighbors. Nodes iteratively extend the routes received from
neighbors into candidate routes, elect a route from among
the candidate routes, and send the elected route to all their
neighbors. Routing policies determine how an elected route
sent by one node extends to a candidate route at a neighbor
node and which route is elected from among a set of candidate
routes.

The Border Gateway Protocol (BGP) [1] is the preeminent
routing vector protocol, allowing for the implementation
of a broad class of routing policies. It is the inter-domain
routing protocol of the Internet, deployed as well in enterprise
networks [2] and in data-centers [3]. Other routing vector
protocols in current usage are associated with restricted classes
of routing policies. For example, the Routing Information
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Protocol (RIP) [4] is a classical distance vector protocol.
It implements routing policies based on lengths, finding
shortest paths in a network. The Interior Gateway Routing
Protocol (IGRP) [5] and the Enhanced IGRP (EIGRP) [5]
implement routing policies based both on lengths and
capacities, finding paths according to a combination of these
two metrics. A less obvious example of a routing vector
protocol lies in the interconnection of routing instances by
border routers through configuration of the Administrative
Distance (AD) parameter and of route redistribution [6]–[8].
The routing policies in this case are called next-hop [9]–[11].
They are characterized by the fact that the only routing
information learned by one node from another is whether or
not a destination is reachable. Routing vector protocols also
have a presence in wireless networks [12], where routing
policies typically combine many metrics that reflect distinct
properties of wireless links [13], [14].

Routing vector protocols are simple and they scale well.
Nonetheless, it is straightforward to devise routing policies
that make them oscillate indefinitely or that trap data-packets
in forwarding loops [7], [15], [16]. Such behaviors are
undesirable. A routing vector protocol is correct if it always
terminates in a stable state devoid of forwarding loops. The
design, configuration, and analysis of routing vector proto-
cols rests much on our ability to characterize the routing
policies that lead to correctness. For a given destination,
Griffin et al. [16] showed that the existence of a stable routing
state is an NP-hard problem. Later, Engelberg et al. [17]
showed that termination of a routing vector protocol is an
undecidable problem.

In the present paper, we demonstrate that if routing policies
are set independently of the destination, then correctness of a
routing vector protocol for all destinations equates to a prop-
erty of routing policies around the cycles of the network, which
we call strict absorbency: a routing vector protocol is correct if
and only if all cycles in the network are strictly absorbent. This
result can be regarded as a generalization to arbitrary routing
policies of the well-known fact that a distance vector protocol
is correct if and only if all cycles in the network have positive
length [18], with the concept of strictly absorbent cycle
generalizing that of a cycle of positive length. However, the
behaviors of a routing vector protocol under arbitrary routing
policies are far more diversified than those of a distance vector
protocol. The equivalence between correctness of a routing
vector protocol and strictly absorbent cycles is harder to prove
that its specialization to shortest paths. The sufficiency of
strict-cycle-absorbency for correctness follows from a conclu-
sion of [19]. The necessity is emphasized in this paper.
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It bears stressing that the premise of routing policies being
set independently of the destination is common in practice. For
example, lengths in RIP, and lengths and capacities in IGRP
and EIGRP, are assigned to links no matter what the desti-
nation IP prefix. In the case of inter-domain routing, network
operators typically configure their BGP routers as a function of
economic relationships their Autonomous Systems (ASs) have
with their neighbor ASs, regardless of destination IP prefixes.
For example, the Gao-Rexford routing policies [20], which
provide a baseline of understanding for how network operators
configure BGP, prescribe that routes learned from customers
are preferred to routes learned from either peers or providers,
and that routes learned from customers are exported to all
neighbor ASs and all routes learned from neighbor ASs are
exported to customers—no mention is made to destination IP
prefixes. The same independence between routing policies and
destinations occurs with next-hop routing policies [10], poli-
cies including sibling-sibling relationships [21], and backup
policies [22]. Indeed, with more than 600,000 globally routed
IP prefixes and more than 50,000 ASs as of today [23], it
would hardly be realistic or conducive to a scalable Internet
routing system to configure BGP per destination IP prefix.

We clarify and justify two hypotheses of our routing model.
First, we assume a setting that includes anycast routing,
whereby a destination is a set of nodes each of which
originates a route. Several applications and services in the
Internet use anycast routing, such as DNS [24] and some
Content Delivery Networks [25]. Anycast routing also models
cases where an IP prefix appears to be originated at multiple
ASs, for example, because the IP prefix is originated at an
exchange point or at a network that multi-homes to several
providers without the intervention of BGP [26]. Second,
our use of the term correctness implies termination and the
absence of forwarding loops in stable state in the network
and in all sub-networks obtained after an arbitrary set of link
failures. This is a reasonable requirement since link failures are
mostly unpredictable, while routing protocols should remain
operational despite them.

Our main result thus reduces the correctness of routing
vector protocols to a structural property of routing policies
in a network. Tests for strict-cycle-absorbency can be incor-
porated in tools for automatic specification and verification
of routing policies [27], [28], endowing the latter with the
ability to always tell whether or not input routing configura-
tions lead to correctness. The tools, and the tests for strict-
cycle-absorbency, presuppose access to the routing policies
of a multitude of nodes. This information may be difficult
to gather in some cases, especially in inter-domain routing,
given the reluctance of network operators to share the routing
configurations of their ASs. Nevertheless, even in the case
of inter-domain routing, the tools and tests serve to check
presumed routing policies and to assist in designing guidelines
for correct configuration of BGP.

Here, we derive two implications of our main result. First,
we show that correctness of next-hop routing policies is at
odds with resiliency to failures. Correct configuration of next-
hop routing policies necessarily excludes some of the paths
physically existing in the network from the possibility of

carrying data-packets. Second, we present a model of BGP
for when the routing policies set through BGP’s parameter
LOCAL-PREF do not depend on BGP’s parameter AS-PATH.
With this model, we present inter-domain routing policies for
sibling-sibling relationships between ASs that always preserve
correctness of BGP.

The remainder of the paper is organized as follows. In the
way of motivation, Section II discusses three examples of rout-
ing policies that lead to different types of undesirable behav-
iors. Section III presents the routing model. Section IV states
and proves the main result, equating the correctness of routing
vector protocols to strictly absorbent cycles. Section V exam-
ines classes of routing policies and assesses their impact on
strict-cycle-absorbency. Next-hop routing policies are debated
in this section. Section VI presents a model of BGP and
provides a discussion of inter-domain routing policies with
sibling-sibling relationships. Section VII further discusses
related work, and Section VIII contains a final summary and
appraisal.

II. CORRECTNESS BY EXAMPLE

We start with a discussion of three simple classes of
routing policies, emphasizing the different types of undesirable
behavior each may induce on a routing vector protocol.

Shortest Paths With Steady Lower Bound: The first example
concerns shortest-path routing with lengths represented by
integers in some finite range that includes negative values.1

Routing policies are such as to find distances (lengths of
shortest paths) in a network: the routing protocol is a standard
distance vector protocol. Links are assigned lengths and routes
associate destinations to lengths. The length of a route is an
estimate of the distance toward the destination. An elected
route at a node v is extended to a candidate route at a neighbor
node u by adding the length of the link from u to v to
the length of the elected route at v, possibly truncated to
fit into the range of allowed lengths. Among the candidate
routes for the same destination, a node elects the one with the
shortest length. It is well-known that a distance vector protocol
terminates in a stable state devoid forwarding loops if and only
if all cycles in the network have positive length.

We investigate in more detail the behavior of a distance
vector protocol when there is a cycle of negative length.
In Figure 1, links point in the direction of the flow of data-
packets; routes travel in the opposite direction. The integers
next to links represent their lengths. Lengths are truncated
from below at −100 with the understanding that a route of
length −100 can be used to forward data-packets. Cycle uvwu
has a negative length of 1 − 4 + 1 = −2. Let node y be
the destination originating a route of length 0. That route
extends to a route of length 1 at w which is then propagated
counterclockwise around the cycle, reaching again node w via
node u as a candidate route of length −2+1 = −1. The latter
route is elected at w and further propagated counterclockwise
around the cycle, arriving back at w as a candidate route of
length −2 − 1 = −3. Routes of ever more negative lengths

1The finite range avoids trivial count-to-infinity problems and is always
verified in practice.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO: CORRECTNESS OF ROUTING VECTOR PROTOCOLS AS A PROPERTY OF NETWORK CYCLES 3

Fig. 1. Links point in the direction of data-packet flow. The length of a link
is indicated next to it. Cycle uvwu has a negative length of −2.

continue to be propagated through w around the cycle until a
stable state is reached. In the stable state, w elects a route of
length −98, learned from u; v elects a route of length −100
learned from w (−4−98 = −102 which is truncated to −100);
and u elects a route of length −99, learned from v. The
stable state encloses a forwarding loop around cycle uvwu:
the forwarding neighbor of w is u; the forwarding neighbor
of u is v; and the forwarding neighbor of v is w.

Suppose, instead, that the destination is node x, rather than
node y, originating a route of length 0. That route extends to a
route of length 1 at v and to a route of length 3 at u. These two
routes will propagate several times counterclockwise around
the cycle until the distance vector protocol terminates in
exactly the same stable state as when the destination was y.
Namely, w elects a route of length −98, learned from u;
v elects a route of length −100, learned from w; and u elects
a route of length −99 learned from v.

In short, for both destinations x and y the distance vector
protocol terminates in a stable state that encloses a forwarding
loop.

Shortest Paths Without Steady Lower Bound: The routing
policies of the second example are similar to those of the
first example, only now a node establishes that the destination
cannot be reached when it receives a route that, according to
standard addition, would yield a candidate route with length
less than −100. The condition for termination of a distance
vector protocol in a stable state devoid of forwarding loops
is the same as before, but the manifestation of undesirable
behavior is different.

Consider again Figure 1 and let y be the destination
originating a route of length 0. That route extends to a route
of length 1 at w which circulates 49 times counterclockwise
around the cycle before arriving at w via u as a route of
length −98. Node w extends the route received from u into a
candidate route of length 1− 98 = −97, elects that route, and
sends it to v. Node v attempts to compute a candidate route
from the route received from w by adding −4 to −97. Since
−4 − 97 = −101 < −100, v establishes that destination y
cannot be reached and sends this information to u which
propagates it further to w. Unable to reach destination y via u,
node w again elects the route of length 1 learned directly
from y. The process repeats itself without the distance vector
protocol ever reaching a stable state—there is no such state.
The same conclusion is valid if the destination were x rather
than y originating a route of length 0.

Shortest-Paths With Path-Complements: In the third exam-
ple, we refine the distance vector routing policies of the
first example by including a path-complement in routes, used
in the same way as the parameter AS-PATH is used in
BGP [1]. In particular, the path-complement provides local
loop-detection. Routes associate destinations to couplets con-
taining a length and a path-complement. For instance, assum-
ing that routes are originated with couplet (0, ε), where ε is
the empty string, from the presence of a route with couplet
(10, vwx) at node u we deduce that a route was originated at x,
propagated through w and v before reaching u, and that the
length of path uvwx is 10. An elected route at a node v extends
to a candidate route at neighbor node u by adding the length
of the link from u to v to the length of the elected route at
v and prefixing v to the path-complement of the elected route
at v, except that if u is in the path-complement of the elected
route at v, then the route is discarded at u. For instance, if link
uv has length 5, then an elected route with couplet (10, wx)
at v extends to a candidate route with couplet (15, vwx) at u;
an elected route with couplet (10, wux) at v is discarded
at u. Among the candidate routes to the same destination,
a node elects the one with the shortest length. If there are
multiple routes with that length, then a node elects one with
the shortest (fewest nodes in the) path-complement. Further
tie-breaks are broken arbitrarily. It is easy to show that if all
cycles in the network have positive or zero length, then the
routing vector protocol terminates in a stable state devoid of
forwarding loops.

It is less obvious what happens when there is a cycle
of negative length, which is the condition we now explore.
Consider Figure 1 in light of the new routing policies. Let y
be the destination originating a route with couplet (0, ε). That
route extends to a route with couplet (1, y) at w, which extends
to a route with couplet (−3, wy) at v, which extends to a route
with couplet (−2, vwy) at u. The latter route is sent from u
to w, but, since w belongs to path-complement vwy, the route
is discarded at w. A stable state for destination y is reached
whereby w elects a route with couplet (1, y), learned from y;
v elects a route with couplet (−3, wy), learned from w;
and u elects a route with couplet (−2, vwy), learned from v.
That stable state does not harbor a forwarding loop. It is shown
graphically in Figure 2.

Suppose, instead, that the destination is node x, rather than
node y, originating a route with couplet (0, ε). That route
extends to a route with couplet (1, x) at v and to a route with
couplet (3, x) at u. Assume that it takes no time for a route
to travel from u to w, it takes one unit of time for a route to
travel from w to v, and it takes one unit of time for a route
to travel from v to u. At time T = 0, nodes u, v, and w elect
routes with couplets (3, x), (1, x), and (4, ux), respectively,
as shown on the left-hand side of Figure 3. At time T = 1,
u elects a route with couplet (2, vx), learned from v; w elects
a route with couplet (3, uvx), learned from u; and v elects
a route with couplet (0, wux), learned from w, as shown on
the right-hand side of Figure 3. Route with couplet (3, uvx),
elected at w, is sent to v, but is discarded there because v is in
path-complement uvx. Route with couplet (0, wux), elected
at v, is sent to u, but is, likewise, discarded because u is
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Fig. 2. Destination is y. Couplets of the routes elected by the nodes in the
stable state are indicated next to them. As a visualization aid, the dashed paths
mark the path-complement of couplets. The stable state does not contain a
forwarding loop.

Fig. 3. Destination is x. Couplets of the routes elected by the nodes are
indicated next to them. As a visualization aid, the dashed paths mark the path-
complement of couplets. The routing vector protocol oscillates indefinitely
between the routing state depicted on the left-hand side and the routing state
depicted on the right-hand side.

in path-complement wux. Therefore, at time T = 2, nodes
u, v, and w revert to the election of routes with couplets (3, x),
(1, x), and (4, ux), respectively, as shown on the left-hand side
of Figure 3. The routing vector protocol oscillates indefinitely.2

In summary, for destination y the routing vector proto-
col terminates in a stable state devoid of forwarding loops
whereas for destination w the routing vector protocol does
not terminate. Our later results will imply that, for the general
case of the distance vector routing policies refined with path-
complements, if at least one cycle in the network has negative
length, then there will be a destination for which the routing
vector protocol does not terminate.

A Note Regarding Destinations: With generality, a destina-
tion is understood in an anycast sense. Consider the network
consisting solely of the cycle of Figure 1, with x and y
removed, and the distance vector routing policies refined with
path-complements. In order to show that the routing vector
protocol does not terminate, the destination must comprise at
least two nodes. For instance, let the destination consist of the
two nodes u and v, with u originating a route with couplet
(3, ε) and v originating a route with couplet (1, ε). Keeping the
previous assumptions on the traveling times of routes, at time
T = 0, u elects the route originated locally with couplet (3, ε);

2The conditions on route travel times that lead to oscillations are broad.
As long as u leaks a route with couplet (3, x) into the cycle and v leaks a
route with couplet (1, x) into the cycle, the routing vector protocol oscillates.

w elects a route with couplet (4, u), learned from u; and v
elects the route originated locally with couplet (1, ε). At time
T = 1, u elects a route with couplet (2, v), learned from v;
w elects a route with couplet (3, uv), learned from u; and v
elects a route with couplet (0, wu), learned from w. At time
T = 2, local loop-detection takes effect and nodes re-elect
the routes they elected at T = 0. The routing vector protocol
oscillates indefinitely.

III. ROUTING MODEL

A routing vector protocol is a distributed algorithm to find
paths in a network according to routing policies configured at
various nodes. Section III-A reviews an algebraic framework
that models arbitrary routing policies. Section III-B discusses
the operation and correctness of a routing vector protocol.

A. Attributes and Labels

The operation of a routing vector protocol relies on itera-
tions of two elementary processes: election of a route at a node
from a set of candidate routes; and extension of an elected
route at a node into a candidate route at a neighbor node.

A route is a piece of state information associating a destina-
tion to an attribute [19]. The set of attributes is denoted by Σ,
assumed finite. Attributes are totally ordered by �. Given two
attributes α and β, α � β is the same as β � α; α ≺ β is the
same as α � β and α �= β; and α � β is the same as β ≺ α.
If α ≺ β (α � β), then we say that α is preferred to β (α is
less preferred than β).

From ≺, we define an election operation � that yields the
most preferred of two attributes:

α � β =

{
α, if α � β;

β, if α � β.

The election operation � is associative, commutative, and
selective [29], so that we can talk without ambiguity about the
elected attribute from among a set of attributes {α1, . . . , αn},
which we denote by �{α1, . . . , αn}. There is a special
attribute • to indicate that a destination is not reachable.
Attribute • is the least preferred of all attributes. Attributes
other than • are called proper. The preference and election
of routes is the preference and election, respectively, of their
attributes. A route is proper if its attribute is proper.

A link uv in a network represents the possibility of for-
warding data-packets from u to v. Routes travel in the opposite
direction. The routing policies of link uv tell how the attribute
of a route elected at v is extended into the attribute of a
candidate route stored at u to reach the destination via v.
They subsume the export policy of v with regard to u and
the import policy of u with regard to v. We assume that
routing policies do not depend on the destination. Therefore,
the routing policies of link uv are modeled by a map on the
set of attributes which we denote by L[uv] and call the label
of uv. Label L[uv] extends attribute α into attribute L[uv](α).
If v cannot reach a destination, then u cannot reach that same
destination via v. Therefore, L[uv](•) = •. The extension of
a route into another is the extension of the attribute of the
former route into the attribute of the latter.
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More generally, we call label to every map L on Σ
such that L(•) = •. A walk u0u1 . . . un in a network
is associated with a label, denoted by L[u0u1 . . . un], that
results from the composition of the labels of its constituent
links: L[u0u1 . . . un] = L[u0u1] · · ·L[un−1un]. A route with
attribute α that propagates along walk u0u1 . . . un, from un

to u0, becomes a route at u0 with attribute L[u0u1 . . . un](α).

B. Operation and Correctness of Routing Vector Protocols

We discuss the operation and correctness of a routing vector
protocol in a network starting from an initial assignment R∗

of attributes to the nodes of the network, with R∗[t] denoting
the attribute assigned to node t. The destination of initial
assignment R∗ is the set D of nodes which have been assigned
a proper attribute:

D = {t | R∗[t] ≺ •}.
If D has multiple nodes, then routing is anycast.

A node t of D originates a route with attribute R∗[t] that
it sends to all its neighbors. Every node u stores, for every
one of its neighbors, a candidate route to reach D via that
neighbor. Whenever u receives a route with attribute α from
its neighbor v, it replaces the previous candidate route to
reach D via v with a new candidate route having attribute
L[uv](α), and then uses operation � among the attributes of
all candidate routes to elect a new route. If the newly elected
route is different from the one previously elected, then it is
sent to all of u’s neighbors. Node v is a forwarding neighbor
of u if the elected route at u is the candidate route learned
from v. The model admits equal-route multi-path routing, so
that any or all of the forwarding neighbors of u can be used
to forward data-packets to D.

A stable state for initial assignment R∗ is a state without
routes for D in transit in the network. Such a state is
represented by a final assignment R of attributes to nodes,
with R[u] denoting the attribute of the elected route at u to
reach D in the stable state. Without routes in transit from v
to u, the last route received at u from v is the route elected
at v: the candidate route at u via v is L[uv](R[v]). Hence,
final assignmentR satisfies the following system of fixed-point
equations [29]:

R[u] = �{L[uv](R[v]) | v a neighbor of u} �R∗[u]. (1)

A routing vector protocol can be regarded as a distributed
algorithm to solve for R given R∗ in the above system of
fixed-point equations.

A final assignment R contains a forwarding loop around
cycle C = u0u1 · · ·un−1u0 if every node of the cycle has
the next for forwarding neighbor, that is, if R[u0] ≺ • and
R[ui] = L[uiui+1](R[ui+1]) for all i, 0 ≤ i < n, where
subscripts are interpreted modulus n. If a forwarding loop
exists around C, then data-packets with destination in D are
forever trapped around C.

A routing vector protocol terminates for initial assignment
R∗ if, eventually, it reaches a stable state for R∗, whatever
the initial routing state and whatever the travel times of routes
across links, in the network and in every sub-network obtained

after an arbitrary set of link failures. A routing vector protocol
is correct for initial assignment R∗ if it terminates and no
final assignment, in the network or a sub-network, contains a
forwarding loop. Last, a routing vector protocol is correct if
it is correct for all initial assignments.

IV. RELATIONSHIP BETWEEN CYCLES

AND CORRECTNESS

The correctness of routing vector protocols is intimately
related to how routing policies are configured at the various
nodes around the cycles of a network. In Section IV-A,
we present the concept of strictly absorbent cycle, which
equates to the correctness of a routing vector protocol. In the
same section, we also present the slightly broader concept of
absorbent cycle, which will play a critical role in our model of
BGP. In Section IV-B, we show that if all cycles in a network
are strictly absorbent, then a routing vector protocol is correct.
In Section IV-C, we show the converse result: if at least one
cycle in the network is not strictly absorbent, then a routing
vector protocol is not correct.

A. Strictly Absorbent Cycles and Absorbent Cycles

A cycle is strictly absorbent3 if, for every combination of
proper routes learned by its nodes externally to the cycle and
sent to their neighbors, at least one node prefers the route
learned externally to the route learned from the neighbor.
In symbols, cycle C = u0u1 · · ·un−1u0 is strictly absorbent if

∀α0≺•,α1≺•,...,αn−1≺• ∃0≤i<n αi ≺ L[uiui+1](αi+1), (2)

where indexes are interpreted modulus n. In Condition (2),
attributes α0, α1, . . . , αn−1 represent external routes. The pref-
erence of the external route over the route learned from the
neighbor at node i is expressed by αi ≺ L[uiui+1](αi+1).

A cycle is absorbent if, for every combination of routes
learned by its nodes externally to the cycle and sent to their
neighbors, at least one node prefers the route learned externally
to the route learned from the neighbor or, for all nodes,
the route learned externally equals the route learned from
the neighbor. In symbols, cycle C = u0u1 · · ·un−1u0 is
absorbent if

∀α0,α1,...,αn−1 ∃0≤i<n αi ≺ L[uiui+1](αi+1)
∨ ∀0≤i<n αi = L[uiui+1](αi+1).

(3)

Every strictly absorbent cycle is absorbent.

B. Strictly Absorbent Cycles Imply Correctness

In a strictly absorbent cycle, the preference for the external
route at some node being assured for every combination of
external routes suggests that neither permanent route oscilla-
tions nor forwarding loops ever form around the cycle. Indeed,
we have the following theorem.

Theorem 1: If all cycles in the network are strictly
absorbent, then the routing vector protocol is correct.

3In [19], a strictly absorbent cycle is called “free.”
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Fig. 4. A routing vector protocol terminates for initial assignment R∗ in the
network to the left if and only if it terminates for initial assignment A∗ in
the augmented network to the right. The destination of initial assignment R∗
comprises nodes u, v, and x, whereas the destination of initial assignment A∗
comprises only node D.

Proof (sketch): Let R∗ be any initial assignment of
attributes to nodes in a network where all cycles are strictly
absorbent. The absence of a forwarding loop in a stable state
derives directly from the definition of strict-cycle-absorbency.
Indeed, let R be a final assignment of elected attributes
in a stable state. A forwarding loop around cycle C =
u0u1 · · ·un−1u0 would mean that there were attributes R[ui],
with R[u0] ≺ •, such that R[ui] = L[uiui+1](R[ui+1]), for
0 ≤ i < n. Attributes R[ui] invalidate the strict absorbency
of C.

In order to show termination for initial assignment R∗,
we rely heavily on [19, Th. 1]. That theorem implies that
given a network where all cycles are strictly absorbent and
a destination in that network comprising a single node,
a routing vector protocol with path-complements as part of
their attributes terminates. In the proof of that theorem, the
purpose of path-complements is only to make the set of
possible attributes finite and, thus, prevent count-to-infinity
problems. In our case, the set of attributes is finite by hypoth-
esis.

Thus, the only aspect left to be proven is that the routing
vector protocol terminates even for an initial assignment R∗

with a destinationD that comprises multiple nodes. Indeed, we
can equate termination in the network with initial assignment
R∗ to termination in an augmented network with an initial
assignment A∗ having a single node for destination. The
augmented network has a new node {D} and new links tD,
for every t in D. Initial assignment A∗ satisfies A∗[D] ≺ •
and A∗[u] = • for every u in the network. Labels of links
tD are such that R∗[t] = L[tD](A∗[D]) for every t in D.
Figure 4 illustrates the relationship between a network and its
augmented network. The added node and links do not create a
cycle. Hence, the routing vector protocol terminates for initial
assignment R∗ in the network if and only if it terminates for
initial assignment A∗ in the augmented network.

C. Correctness Implies Strictly Absorbent Cycles

The definition of strictly absorbent cycle, Condition (2),
compares routes to other routes that traverse one single link of

a cycle. In order to show undesirable routing behaviors when
cycles are not strictly absorbent, we need to be able to compare
routes to other routes that propagate several hops around a
cycle. We first establish a notation to deal with the propagation
of such routes. In relation to cycle C = v0v1 · · · vn−1v0, we
let, for 0 ≤ i, j < n,

viCvj = vivi+1 · · · vj ,

with indexes interpreted modulus n. If i �= j, then viCvj is
a path from vi to vj along C; if i = j, then viCvj is a
circuit around C starting and ending at node vi.4 Recall from
Section III that the label of viCvj , denoted by L[viCvj ], is
defined as the composition of the labels of the links of viCvj :

L[viCvj ] = L[vivi+1] · · ·L[vj−1vj ],

with indexes interpreted modulus n. A route with attribute α
expedited by vj around the cycle becomes a candidate route
with attribute L[viCvj ](α) at vi.

We say that the m (1 ≤ m ≤ n) nodes u0, u1, . . . , um−1

are disposed around C if the ujCuj+1, for 0 ≤ j < m
with indexes interpreted modulus m, are pairwise link-disjoint.
Informally, nodes u0, u1, . . . , um−1 are disposed around C if
on traveling around the cycle starting at u0 we visit the other
nodes in the order u1, u2 . . . , um−1 before returning to u0.

The propagation of routes several hops around cycle C is
well described by the following n conditions, each of which
may or may not be true of C:

Condition T(m), for 1 ≤ m ≤ n: There are m nodes
u0, u1, . . . , um−1 disposed around C and m proper attributes
α0, α1, . . . , αm−1 such that

∀0≤i<m αi � L[uiCui+1](αi+1).

In Condition T(m), the inequality αi � L[uiCui+1](αi+1)
means that when the external route with attribute αi+1 is
propagated from ui+1 to ui, it becomes equal or preferred to
the external route at ui. For m the number of nodes of C,
m = n, we have that uiCui+1 is a link of C, that is,
uiCui+1 = vjvj+1, for some index j. Therefore, T(n) is
the statement that cycle C is not strictly absorbent.

Consider the next two conditions on C:
Condition S: There is a node u of C and a proper attribute

α such that

α � L[uCu](α).

Condition M: For some integer m greater than one, there
are m nodes u0, u1, . . . , um−1 disposed around C and m
attributes α0, α1, . . . , αm−1 such that

∀0≤i<m αi+1 � L[ui+1Cui+2](αi+2)
∧ αi ≺ L[uiCui+2](αi+2).

In Condition S, the inequality α � L[uCu](α) means that
a route with attribute α expedited by u around C arrives
back at u as a candidate route with the same or a preferred
attribute. In Condition M, the two inequalities αi+1 �

4As is usually the case, the string v0v1 · · · vn−1v0 denotes both a cycle
and a circuit around that cycle starting and ending at v0. The context makes
clear which is the case.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO: CORRECTNESS OF ROUTING VECTOR PROTOCOLS AS A PROPERTY OF NETWORK CYCLES 7

L[ui+1Cui+2](αi+2) and αi ≺ L[uiCui+2](αi+2) mean that
when the external route with attribute αi+2 is propagated from
ui+2 to ui+1, it becomes preferred to the external route there,
αi+1 � L[ui+1Cui+2](αi+2), but, when this preferred route
at ui+1 is propagated further to ui, it becomes less preferred
than the external route there, αi ≺ L[uiCui+2](αi+2).

In the next theorem, we show that if C is not strictly
absorbent, then, by taking the smallest integer for which T(m)
is valid, C satisfies either Condition S or Condition M. Then,
we show that each of these two conditions drives a routing
vector protocol into undesirable behaviors.

Theorem 2: If cycle C = v0v1 · · · vn−1v0 is not strictly
absorbent, then it satisfies Condition S or Condition M
(or both).

Proof: Let m∗ be the smallest integer for which Condition
T(m) is satisfied, and let u0, u1, . . . , um∗−1 be m∗ nodes
disposed around C and α0, α1, . . . , αm∗−1 be m∗ proper
attributes that together validate T(m∗):

∀0≤i<m∗ αi � L[uiCui+1](αi+1). (4)

Condition T(1) is exactly Condition S. Thus, if m∗ = 1, then
the theorem is proven.

Suppose, instead, that m∗ ≥ 2. We show that Condition M
is validated with the m∗ nodes u0, u1, . . . , um∗−1 disposed
around C and the m∗ attributes α0, α1, . . . , αm∗−1. In order
to obtain a contradiction, assume otherwise, that is, assume
that

∃0≤i<m∗ αi+1 � L[ui+1Cui+2](αi+2)
∨ αi � L[uiCui+2](αi+2).

(5)

Let i∗ be the index identified by the existential quantifier:

αi∗+1 � L[ui∗+1Cui∗+2](αi∗+2)
∨ αi∗ � L[ui∗Cui∗+2](αi∗+2).

(6)

If the first disjunct above is satisfied, αi∗+1 �
L[ui∗+1Cui∗+2](αi∗+2), then, combining with (4), we
deduce that

αi∗+1 = L[ui∗+1Cui∗+2](αi∗+2). (7)

Therefore, we write

αi∗ � L[ui∗Cui∗+1](αi∗+1) (from (4))

= L[ui∗Cui∗+1](L[ui∗+1Cui∗+2](αi∗+2)) (from (7))

= L[ui∗Cui∗+2](αi∗+2).

The set of nodes u0, u1, . . . , ui∗ , ui∗+2, . . . , um∗−1 and the
set of attributes α0, α1, . . . , αi∗ , αi∗+2, . . . αm∗−1 validate
T(m∗ − 1), contradicting the choice of m∗ as the smallest
integer for which Condition T(m) is satisfied.

If the second disjunct in (6) is satisfied,
αi∗ � L[ui∗Cui∗+2](αi∗+2), then the set of nodes
u0, u1, . . . , ui∗ , ui∗+2, . . . , um∗−1 and the set of attributes
α0, α1, . . . , αi∗ , αi∗+2, . . . αm∗−1, validate T(m∗ − 1), again
contradicting the choice of m∗ as the smallest integer for
which Condition T(m) is satisfied.

In conclusion, Condition M is validated with the m∗ nodes
u0, u1, . . . , um∗−1 disposed around C and the m∗ attributes
α0, α1, . . . , αm∗−1.

We separate the proofs of incorrectness under Condition S
and under Condition M, as they correspond to distinct types
of undesirable behaviors.

Theorem 3: If a network has a cycle that satisfies condi-
tion S, then a routing vector protocol is not correct in that
network.

Proof: Since the only thing we know about the network
is that it contains a cycle C that satisfies condition S, we
consider the sub-network consisting of C alone. There is a
node u and a proper attribute α such that α � L[uCu](α).
We subdivide the proof into two cases. In the first case, there is
an attribute β such that β � α and β = L[uCu](β). The state
whereby u elects a route with attribute β and every node x of
the cycle other than u elects a route with attribute L[xCu](β)
is stable and encloses a forwarding loop (see the first example
of Section II).

In the second case, for all attributes β � α, we have
β �= L[uCu](β). In particular, α � L[uCu](α). Consider
the initial assignment that maps α to u. That is, the des-
tination is composed of u alone originating a route with
attribute α. No stable state exists implying that the routing
vector protocol oscillates forever (see the second example
of Section II).

Theorem 4: If a network has a cycle that satisfies condi-
tion M, then a routing vector protocol is not correct in that
network.

Proof: Again, since the only thing we know about the
network is that it contains a cycle C that satisfies condition M,
we consider the sub-network consisting of C alone. Let
u0, u1, . . . , um−1 be the m nodes, m ≥ 2, disposed around
C and α0, α1, . . . , αm−1 be the m attributes that validate
Condition M.

Consider the initial assignment that maps αj to uj , 0 ≤
j < m. The destination is the set of nodes {u0, u1, . . . , um−1}
with uj originating a route with attribute αj . Suppose that it
takes one unit of time for a route to propagate from uj+1

to uj around C. Initially, uj elects the route with attribute
αj originated locally. After one unit of time has elapsed,
uj elects route L[ujCuj+1](αj+1), learned from around the
cycle, since αj � L[ujCuj+1](αj+1). After one more unit
of time elapses, uj learns candidate route L[ujCuj+2](αj+2)
which propagated from uj+2 through uj+1 to uj . Since
αj ≺ L[ujCuj+2](αj+2), node uj reverts its election to
the route with attribute αj originated locally. The routing
vector protocol oscillates forever. These events are illustrated
in Figure 5 for a cycle with six nodes and m = 3 (see the
third example of Section II).

The next theorem combines the previous three theorems into
the converse of Theorem 1.

Theorem 5: If the routing vector protocol is correct, then
all cycles in the network are strictly absorbent.

Proof: We prove the contrapositive statement. If the
network has at least one cycle that is not strictly absorbent,
then, by Theorem 2, that cycle satisfies either Condition S or
Condition M. If it satisfies Condition S, then, by Theorem 3,
the routing vector protocol is not correct; if it satisfies Con-
dition M, then, by Theorem 4, the routing vector protocol is
also not correct.
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Fig. 5. Nodes u0, u1, and u2, and attributes α0, α1, and α2 assert
Condition M. A routing vector protocol oscillates when u0, u1, and u2

originate routes α0, α1, and α2, respectively. Attributes of elected routes are
shown next to nodes, outside of the circle. A dashed circle indicates election
of the originated route (left-hand side). A dashed arrow points to the origin
of the route that is currently elected (right-hand side).

V. LINK PROPERTIES AND CORRECTNESS

Routing policies are typically configured from a small set
of parameters and rules in a way that must be intelligible
to a network operator. Thus, it is not surprising that many
routing policies used in practice end up having some structure
which translates into algebraic properties of the labels of
links. We present three such algebraic properties and relate
them to strict-cycle-absorbency. In Section V-A, we review
absorbency as a property of links, and in Section V-B, we
discuss isotonicity. These two properties will be used later
in the analysis of concrete routing policies for inter-domain
routing. In Section V-C, we present next-hop routing policies
and show why they constrain the usability of a network.

A. Absorbency

A label is absorbent if it maps every attribute either into
itself or into a less preferred attribute [19]. In symbols, label L
is absorbent if

∀α α � L(α). (8)

A label is strictly absorbent if it maps every proper attribute
into a less preferred attribute. In symbols, label L is strictly
absorbent if

∀α≺• α ≺ L(α). (9)

A link is (strictly) absorbent if its label is (strictly)
absorbent. Clearly, if all links of a cycle are absorbent, then
the cycle is absorbent. The following theorem is easily derived
from [19, Th. 2].

Theorem 6: Let C = u0u1 · · ·un−1u0 be a cycle all links
of which are absorbent. Then, C is strictly absorbent if and
only if for every proper attribute, there is a link whose label
maps that attribute into a less preferred one. In symbols, C is
strictly absorbent if and only if

∀α≺•∃0≤i<n α ≺ L[uiui+1](α).

In particular, if one link of the cycle is strictly absorbent,
then the cycle is strictly absorbent.

Strict-link-absorbency is the sufficient condition for
correctness of routing vector protocols most invoked by
researchers [7], [11], [28], [30]. However, it fails to represent
many routing policies used in practice (see Section VI)
and it unnecessarily constrains the design of routing vector

protocols. In addition, absorbency is a somewhat artificial
property for links in that it compares two routes, the original
one and its extension, held at distinct nodes. In the operation
of routing vector protocols, routes are compared at nodes,
not across them.

B. Isotonicity
A label is isotone5 if it does not invert the preference

between any two attributes [19], [29], [31]. In other words,
a label is isotone if it is an increasing map on the ordered set
of attributes. In symbols, label L is isotone if

∀α,β α � β ⇒ L(α) � L(β). (10)

A link is isotone if its label is isotone. The following
theorem is easily obtained from [19, Th. 4].

Theorem 7: Let C = u0u1 · · ·un−1u0 be a cycle all links
of which are isotone. Then, C is strictly absorbent if and only
if the label of the circuit around C starting and ending at an
arbitrary node ui is strictly absorbent. In symbols, C is strictly
absorbent if and only if:

∀α≺• α ≺ L[uiCui](α).

The next theorem is proven in the appendix.
Theorem 8: Let C = u0u1 · · ·un−1u0 be a cycle all links

of which are isotone. Then, C is absorbent if and only if the
labels of all circuits around C are absorbent. In symbols, C
is absorbent if and only if:

∀0≤i<n∀α α � L[uiCui](α).

Theorems 7 and 8 significantly reduce the complexity
of testing a cycle for strict absorbency and absorbency,
respectively, to a verification on the labels of the circuits
around the cycle.

C. Next-Hop
With next-hop routing policies, the only routing information

that a node learns from a neighbor node is whether or not a
destination is reachable [9]–[11]: the node has no information
about other properties of the route elected at the neighbor.
We formulate next-hop routing policies in algebraic terms,
show that these policies constrain the usability of a network,
and provide a brief discussion of their deployment in current
networks. Consider a link uv with next-hop routing policies.
When u learns from v that the destination is reachable, it
elects a route with an attribute which may depend on v, but
not on the attribute of the route elected at v. Therefore, given
attributes α and β of elected routes at v, if L[uv](α) ≺ •
and L[uv](β) ≺ •, then we must have L[uv](α) = L[uv](β).
In general, label L is next-hop if

∀α,β L(α) ≺ • ∧ L(β) ≺ • ⇒ L(α) = L(β). (11)

A link is next-hop if its label is next-hop.
The next theorem gives an implication of strict-cycle-

absorbency for when routing policies are next-hop.
Theorem 9: Let C = u0u1 · · ·un−1u0 be a cycle all links

of which are next-hop. If C is strictly absorbent, then there

5Several authors use the term monotonicity rather than isotonicity.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO: CORRECTNESS OF ROUTING VECTOR PROTOCOLS AS A PROPERTY OF NETWORK CYCLES 9

is a node ui of C that does not propagate any proper route
around C, from its neighbor ui+1 to its neighbor ui−1.
In symbols, if C is strictly absorbent, then

∃0≤i<n∀α L[ui−1uiui+1](α) = •,
where indexes are interpreted modulus n.

Proof: We prove the contrapositive statement. Assume
that for every i, 0 ≤ i < n, there is a proper attribute αi+1

such that ui propagates a route with attribute αi+1 from ui+1

to ui−1:

L[ui−1uiui+1](αi+1) ≺ •, (12)

with indexes interpreted modulus n. Inequality (12) implies
that L[uiui+1](αi+1) ≺ •. Define γi = L[uiui+1](αi+1) for
every i, 0 ≤ i < n.

Inequality (12) also implies

L[ui−1ui](γi) = L[ui−1ui](L[uiui+1](αi+1))
= L[ui−1uiui+1](αi+1) ≺ •.

Since L[ui−1ui](αi) ≺ •, L[ui−1ui](γi) ≺ •, and ui−1ui is
next-hop, we have

L[ui−1ui](γi) = L[ui−1ui](αi) = γi−1,

for every i, 0 ≤ i < n. Therefore, attributes γ0, γ1, . . . , γn−1

assert that C is not strictly absorbent.
We now see how all next-hop routing policies constrain

the paths that can be used in a network to transport data-
packets. From Theorem 5, correctness requires all cycles to
be strictly absorbent. From Theorem 9, there is one node in
every strictly absorbency cycle that does not propagate any
proper route around the cycle. Let C be a strictly absorbent
cycle with at least three nodes. If node v of C does not
propagate any proper route from its neighbor w to its neighbor
u, then path uvw—and any path containing uvw—is never
discovered by the routing vector protocol and, thus, it can
never be used for forwarding data-packets, not even after link
failures in other parts of the network. Reference [32] provides
a polynomial-time algorithm to quantify how much of the
physical connectivity of a network is lost for any fixed, but
arbitrary, next-hop routing policies, showing that the losses
can be significant.

There is intuition behind the reduced usability of a network
operated with next-hop routing policies. For correctness, every
proper route that tours around a cycle must either be filtered
somewhere along the cycle or arrive back at the origin node
with a proper attribute that is less preferred than the one it
started out with. Next-hop routing policies exclude the second
possibility, as they do not allow the attribute of a route to build
up to a less preferred proper attribute when it arrives back at
the origin node.

Next-hop routing policies are common in inter-domain rout-
ing, because they confer secrecy to the routing configuration
of an AS, in that the only routing information conveyed from
the AS to a neighbor AS is the set of destinations that it can
reach—which is minimal information required for communi-
cation. The popular Gao-Rexford routing policies [20] are a
particular case of next-hop routing policies (see Section VI-C).

The structural constraint accompanying them, stating that there
should not exist a cyclic dependency of ASs where each AS
is a customer of the next in that dependency, is exactly the
statement that all cycles should be strictly absorbent, and it
constrains the paths that can used in the Internet for carrying
data traffic [33].

Next-hop routing policies are the class of policies that
one obtains when interconnecting routing instances at border
routers through configuration of parameter Administrative Dis-
tance (AD) and of Route Redistribution (RR), a form of inter-
connection that has been comprehensively studied in a number
of papers by Le, Xie, and other co-authors [7], [8], [34].
Each routing instance that a border router is attached to has
an AD value that establishes a preference for candidate routes
learned from that routing instance. Routing instances with
smaller AD values are preferred. Parameter AD sidesteps the
difficult problem of comparing and transforming attributes of
routes belonging to distinct routing instances. RR designates
which routes are exported from one routing instance to another.
Reference [34] proposes strict-link-absorbency as a condition
for correct configuration of interconnected routing instances.
Our conclusions in this paper show that the condition for
correctness can be widened to strict-cycle-absorbency. The
resiliency of a network composed of interconnected routing
instances improves if parameter AD and RR can be configured
per destination IP prefix. However, Reference [35] shows, by
example, that, even in this case, not all paths in the network
can be used for carrying data traffic.

VI. APPLICATION TO BGP AND INTER-DOMAIN ROUTING

A route in BGP is associated with a number of parameters,
of which we consider two: LOCAL-PREF and AS-PATH.
LOCAL-PREF indicates a level of preference assigned by a
node to a route learned from a neighbor. Given two candidate
routes at a node, learned from different neighbors, the one
with largest value of LOCAL-PREF is preferred. AS-PATH is
the sequence of nodes traversed by a route from where it was
originated up to the node currently holding it. AS-PATH avoids
looping routes and it implements shortest-path tie-breaking
for candidate routes with the same value of LOCAL-PREF.
We present a model of BGP that decouples the routing policies
realizable with LOCAL-PREF from the far more restricted
routing policies realizable with AS-PATH and show that,
according to this model, BGP is correct if and only if all
cycles are absorbent in terms of the LOCAL-PREF routing
policies. Section VI-A provides an algebraic model for the
AS-PATH routing policies. Section VI-B expounds our model
of BGP and derives its correctness condition. The model is
used in Section VI-C to investigate the impact routing policies
for siblings have in the correctness of inter-domain routing.

A. AS-PATH Routing Policies

Nodes have unique identifiers taken from some finite set.
The default routing decisions involving AS-PATH at a node
consist in: (i) invalidating a route that already references the
node; (ii) preferring routes with smaller numbers of identifiers;
and (iii) adding the node’s identifier to the elected route before
sending it to neighbors. These decisions have been exploited in
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two primitive types of routing policies: source-poisoning and
node prepending. With source-poisoning [36], a destination
originates a route containing a sequence of identifiers, thereby
ensuring that none of the nodes identified in the sequence
are ever present in a path to the destination. With node pre-
pending [37], a node sends an elected route to a neighbor with
its own identifier inserted multiple times, thereby inflating the
length of the path announced in the route and discouraging
the neighbor from electing it.

The algebraic model for the AS-PATH routing policies
consists of P-attributes and P-labels. The set ΣP of P-attributes
comprises strings of nodes where a node may appear more
than once in a string only in consecutive positions, together
with •. For example, if u, v, and x are nodes, then uuvvvx
and uvxxx are P-attributes whereas uvxxxv is not (v appears
in non-consecutive positions). Given two strings φ and ψ,
φ is preferred to ψ if the length of φ is shorter than that
of ψ, |φ| < |ψ|.

The label of link uv is of the form 〈uvl〉, where l is
an integer determining the amount of node pre-pending. The
case l = 1 corresponds to the operation without pre-pending.
We have

〈uvl〉(φ) =

{
vlφ, if u is not in φ;

•, otherwise.
(13)

All links are strictly absorbent.

B. Model and Correctness of BGP

We consider the case where the routing policies imple-
mented with LOCAL-PREF can be decoupled from AS-PATH.
Concretely, this means that the value of LOCAL-PREF of
a candidate route at a node can be regarded as a function
of the value of LOCAL-PREF of the route elected at the
neighbor wherefrom the candidate route was learned. LOCAL-
PREF may be a constant for a given neighbor, may be set
through BGP-communities, or even through AS-PATH. What
is excluded from our assumption is two routes with the same
value of LOCAL-PREF at a neighbor giving rise to two
candidate routes with different values of LOCAL-PREF at the
node.

The routing policies realized with LOCAL-PREF alone
are modeled by L-attributes and L-labels. The set of L-
attributes is denoted by ΣL and their order by �L.
Proper BGP-attributes (our use of the term) are pairs composed
of a proper L-attribute and a proper P-attribute:

Σ = (ΣL − {•})︸ ︷︷ ︸
LOCAL-PREF

× (ΣP − {•})︸ ︷︷ ︸
AS-PATH

∪{•},

with lexicographic ordering among them. For all proper
BGP-attributes (α, φ) and (β, ψ),

(α, φ) ≺ (β, ψ), if α ≺L β, or α = β and |φ| < |ψ|. (14)

The BGP-label of link uv is a pair composed of an
L-label, LL[uv], acting on L-attributes and a P-label, 〈uvl〉,
acting on P-attributes, except that we only obtain a proper
BGP-attribute if both the L-attribute and the P-attribute are
themselves proper:

(LL[uv], 〈uvl〉)(α, φ) = (LL[uv](α), vlφ), (15)

if LL[uv](α) ≺ • and u is not in φ; otherwise,

(LL[uv], 〈uvl〉)(α, φ) = •. (16)

Because AS-PATH routing policies implement shortest-path
tie-breaking on LOCAL-PREF routing policies, we expect
(non-strict) absorbency of a cycle according to LOCAL-
PREF routing policies to be sufficient for strict absorbency
of the cycle according to the combined routing policies. The
following theorem certifies this expectation.

Theorem 10: A cycle is strictly absorbent according to
BGP-attributes and BGP-labels if and only if it is absorbent
according to L-attributes and L-labels.

Proof: Let C = u0u1 · · ·un−1u0 be a cycle with n nodes
and let li be the number of times node ui is pre-pended in
a route sent by ui to ui−1, 0 ≤ i < n, with indexes inter-
preted modulus n. Let (α0, φ0), (α1, φ1), . . . , (αn−1, φn−1) be
proper BGP-attributes. Because C is absorbent according to
L-attributes and L-labels, we have

∃0≤i<n αi ≺L LL[uiui+1](αi+1)
∨ ∀0≤i<n αi = LL[uiui+1](αi+1)

(17)

We need to show that there is an index i such that

(αi, φi) ≺ (LL[uiui+1], 〈uiu
li+1
i+1 〉)(αi+1, φi+1). (18)

Clearly, if there is an index i such that ui is in φi+1, then,
from (16),

(αi, φi) ≺ • = (LL[uiui+1], 〈uiu
li+1
i+1 〉)(αi+1, φi+1).

So, assume that ui is not in φi+1, for all i. From (17), either:
(i) there is an index i such that αi ≺L LL[uiui+1](αi+1); or
(ii) for all i, we have αi = LL[uiui+1](αi+1). From (14), case
(i) readily implies

(αi, φi) ≺ (LL[uiui+1](αi+1), u
li+1
i+1 φi+1)

= (LL[uiui+1], 〈uiu
li+1
i+1 〉)(αi+1, φi+1).

Regarding case (ii), if there were no index i satisfying (18),
then, from (14), we would have

|φi| ≥ |uli+1
i+1 | + |φi+1| = li+1 + |φi+1|,

for all i, 0 ≤ i < n, with indexes interpreted modulus n.
Adding the n inequalities above leads to the contradiction
0 ≥ l0 + · · ·+ ln−1. Combining cases (i) and (ii), we conclude
that there is always an index i satisfying (18), so that C is
strictly absorbent.

For the converse statement, suppose that C is not
absorbent according to L-attributes and L-labels. Then, there
are proper L-attributes α0, α1, . . . , αn−1 such that either
LL[uiui+1](αi+1) ≺L αi or LL[uiui+1](αi+1) = αi for all i,
with the inequality holding for at least one index. Any
P-attributes φ0, φ1, . . . , φn−1 such that ui is not in φi+1

and li+1 + |φi+1| < |φi| whenever LL[uiui+1](αi+1) = αi

assert that C is not strictly absorbent. For example, if
LL[un−1u0](α0) ≺L αn−1, then we may take φn−1 = ε and
φi = u

li+1+···+ln−1+n−i−1
i , for 0 ≤ i < n− 1, where ε is the

empty string.
Combining Theorems 1, 5, and 10, we obtain the condition

for correctness of BGP.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOBRINHO: CORRECTNESS OF ROUTING VECTOR PROTOCOLS AS A PROPERTY OF NETWORK CYCLES 11

Theorem 11: Whenever the routing policies implemented
with LOCAL-PREF are decoupled from those implemented
with AS-PATH, BGP is correct if and only if all cycles are
absorbent according to the former routing policies.

C. Customers, Providers, Peers, and Siblings

Any two neighbor ASs of the Internet hold an economic
relationship between them that, with some simplification, is
classified in one of three types: customer-provider; peer-peer;
and sibling-sibling. A customer pays to a provider to transit
traffic with the rest of the Internet. Two peers exchange traffic
between themselves and their respective customers without
monetary compensations. Two siblings provide mutual transit
without monetary compensations. These relationships materi-
alize into routing policies implemented in BGP with recourse
to parameter LOCAL-PREF. Gao and Rexford [20] identified
typical routing policies governing customers, providers, and
peers. According to these policies, routes learned from cus-
tomers are preferred to routes learned from peers and the latter
are preferred to routes learned from providers.6 Routes learned
from a customer are exported to all neighbor ASs, all routes
learned from neighbor ASs are exported to a customer, and
these are the only exportations allowed. Liao et al. [21] expand
on these policies to accommodate siblings. All routes learned
from neighbor ASs are exported to a sibling. A route that is
exported to a sibling keeps the quality of having been learned
from the outside from a customer, a peer, or a provider, as the
case may be, but its preference is decreased.

We model these routing policies algebraically. L-attributes
are of the form (x, n) standing for ‘learned from a x through
n siblings’, where x is ‘customer’, ‘peer’, or ‘provider’,
synthetically represented by the letters c, r, and p, respectively,
and n is a nonnegative integer. For example, a route learned
from a customer has L-attribute (c, 0) and a route learned from
a sibling which learned it from a customer has L-attribute
(c, 1). We have (c, n) ≺L (r,m) ≺L (p, l), for all n, m, and l,
and (x, n) ≺L (x,m), for all x ∈ {c, r, p} and n < m.
A customer link joins a provider to a customer; its
L-label is denoted by C. A peer link joins a peer to a peer; its
L-label is denoted by R. A provider link joins a customer to a
provider; its L-label is denoted by P . And a sibling link joins
a sibling to a sibling; its L-label is denoted by S. L-labels
map L-attributes according to the following chart.

(c, n) (r, n) (p, n)
C (c, 0) • •
R (r, 0) • •
P (p, 0) (p, 0) (p, 0)
S (c, n+ 1) (r, n+ 1) (p, n+ 1)

Each of the qualified lines characterizes one L-label. For
example, C(c, n) = (c, 0) encodes the fact that a route learned
through a sequence of siblings the first of which learned it
from a customer is exported to a provider, losing track of
the passage through siblings. The transformation R(p, n) = •

6In [20], routes learned from peers do not have to be preferred to routes
learned from providers. We make the extra assumption because it seems to
be valid in practice and it simplifies the presentation.

encodes the fact that a route learned from a provider is not
exported to a peer no matter what the passage through siblings.
The transformations S(x, n) = (x, n + 1), for x ∈ {c, r, p},
encode the fact that any route is exported to a sibling with a
decrease in preference.

L-labels R and S are strictly absorbent, but neither L-label
C nor L-label P is absorbent: for example, (c, n) �L (c, 0) =
C(c, n), for n a positive integer. On the other hand, each of
the L-labels C, R, P , and S is isotone. Hence, we can always
discern the L-absorbency of a cycle from the L-absorbency of
its circuits, Theorems 7 and 8. The L-label of a circuit is the
composition of the L-labels of its links. The next chart shows
the composition of two L-labels, with Z denoting the L-label
that maps every L-attribute to •.

C R P S
C C Z Z C
R R Z Z R
P PC PC P P
S SC SR SP SS

For instance, the composition of L-label C with L-label S gives
L-label C, that is, CS = C. The compositions PC and PR
are the same label, represented in the chart by PC: we have,
PC(c, n) = (p, 0) and PC(r, n) = PC(p, n) = •, for all n.

We are now well positioned to characterize the strictly
absorbent cycles of BGP configured with the routing policies
described above.

• All links of the cycle are either peer links or sibling
links: strictly absorbent. Each link is strictly absorbent
according to L-attributes and L-labels. Thus, each cycle
is strictly absorbent.

• The cycle has at least two different types of
links among customer, peer, and provider: strictly
absorbent. Suppose the cycle has at least one customer
link. The L-label of the circuit with endpoint at the tail
of a customer link is of the form CX1 · · · Xk · · · Y · · · ,
where Xi ∈ {C,S} and Y ∈ {R,P}. Consulting
the chart of pairwise compositions, we readily obtain
CX1 · · · Xk · · · Y · · · = CY · · · = Z . Therefore, the cycle
is strictly absorbent according to L-attributes and L-labels
and, thus, it is strictly absorbent. The same reasoning
applies to a cycle without customer links, but with at
least one peer link and one provider link.

• The cycle has at least one customer link and all other
links are either customer links or sibling links: not
strictly absorbent. The L-label of a circuit with endpoint
at the tail of a customer link is of the form CX1 · · · Xi · · ·
where Xi ∈ {C,S}. Consulting the chart of pairwise
compositions, we deduce CX1 · · · Xi · · · = C. Since C
is not absorbent, the cycle is not absorbent according
to L-attributes and L-labels and, thus, it is not strictly
absorbent.

• The cycle has at least one provider link and all other
links are either provider or sibling links: not strictly
absorbent. The same reasoning as used above can be
applied here.

Having identified the cycles which are not strictly absorbent,
we show in Figure 6 a small network containing one of those
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Fig. 6. Inter-domain routing policies involving customers, providers, and
siblings. Destination is z. Attributes of elected routes at ASs u and v are
indicated next to these nodes. Dashed paths mark the values of AS-PATH.
BGP oscillates indefinitely between the routing state depicted on the left-hand
side and the routing state depicted on the right-hand side.

cycles. The letters beside the links indicate their L-labels.
AS w is a customer of AS v and AS v is a customer of AS u.
ASs u and w are siblings. So are ASs u and x, and ASs v
and y. AS z is a customer of both ASs x and y. For every
link represented, there is another one in the opposite direction
that we omit in order not to clutter the drawing. This network
might have arisen from some initial arrangement where w was
also a customer of u, but then the owners of u and w merged
their business. As a consequence, u and w were configured to
share all their elected routes, becoming siblings. When w was
a customer of u, cycle uvwu was strictly absorbent. Now that
they are siblings, cycle uvwu is not strictly absorbent.

The destination is node z alone. Suppose that, at some
instant of time, u and v have just elected routes (c, 1, xz) and
(c, 1, yz), learned from their siblings x and y, respectively,
as shown on the left-hand side of Figure 6. These routes
are exported counterclockwise around the cycle. Eventually,
u and v elect routes (c, 0, vyz) and (c, 0, wuxz), respectively,
learned from their neighbors around the cycle, as shown
on the right-hand side of Figure 6. These routes, too, are
exported counterclockwise around the cycle. At a later instant
of time, u and v realize that the new routes they learn from
around the cycle involve a loop containing them. When this
happens, they revert to electing routes (c, 1, xz) and (c, 1, yz)
learned externally to the cycle. A permanent routing state
oscillation is established. The reason for this incorrectness can
be traced to the routing policies for siblings, which perform
“hot potato” routing between them in relation to customer
routes, or peer routes, or provider routes learned from the
outside. In Figure 6, u and v prefer to forward data-packets
with destination in z to their clockwise customers v and w,
respectively, rather than forward them more directly to z
via siblings x and y, respectively. A permanent forwarding
loop is potentially installed around cycle uvwu except that
AS-PATH prevents the formation of the forwarding loop, while
converting it into route oscillations.

Preserving the Gao-Rexford routing policies for customer-
provider and peer-peer relationships, it is possible to devise
routing policies for sibling-sibling relationships that guarantee
correctness of BGP. It is sufficient to have a sibling keep the
preference of a route, rather than decrease it, as it is exported

to a neighbor sibling, and let AS-PATH determine whether
an AS forwards data-packets to customers, peers, or providers
directly or through siblings. We model the new routing policies
algebraically. There are only three proper L-attributes: ‘learned
from a customer’, ‘learned from a peer’, ‘learned from a
provider’, represented by the letters c, r, and p, respectively,
and such that c ≺L r ≺L p. The L-label of a customer link,
a peer link, a provider link, and a sibling link are still denoted
by C, R, P , and S, respectively, now given by the chart below.

c r p
C c • •
R r • •
P p p p
S c r p

We note that S is just the identity label. All links are absorbent
according to L-attributes and L-labels; all cycles are absorbent
according to L-attributes and L-labels; all cycles are strictly
absorbent according to BGP-attributes and BGP-labels, and
BGP is correct.

With the previous routing policies, a unique stable state
is reached in the network of Figure 6, whereby u elects
route (c, xz) and v elects route (c, yz), corresponding to the
values of AS-PATH shown on the left-hand side of the figure.
In general, it can be shown that siblings sharing routes without
a decrease or increase in preference neither introduce nor break
routing anomalies, whatever the routing policies governing
other pairs of ASs.

VII. ADDITIONAL RELATED WORK

We complement the citations made in the text with related
work on the fundamentals of routing vector protocols. Two
frameworks have been proposed for a unified study of these
protocols: the Stable Paths Problem (SPP) [16], [38] and the
Algebraic Theory of Routing (ATR) [19], [39] (which is the
one we adopted here). An instance of the SPP is a network
topology and one single destination in that topology. Routing
policies are encoded by associating to each node an ordered
set of permitted paths through which the destination can be
reached. We refer the reader to the recent survey on the
SPP [40]. By focusing on paths, which are concrete sub-parts
of a network topology, the SPP provides a gentle introduction
to conflicting routing policies and state oscillations in small
networks.

An instance of the ATR is an ordered set of attributes
together with labels that modify them. Such an instance
reproduces the way routing policies are configured in practice,
which is through parameters whose values (attributes) elect
one route from among any set of routes (election operation)
and rules for the importation and exportation of routes (labels
of links). The ATR is more general than the SPP in that it
can model routing systems that cannot be modeled with the
SPP. For example, the ATR can be used to model routing
vector protocols where permanent forwarding loops are a
potential problem as is the case in the interconnection of
routing instances through configuration of parameter AD and
of RR [7]. The ATR is also more abstract than the SPP
in that it provides for the description of, and reasoning
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about, routing policies independently of concrete network
topologies and destinations. In particular, the ATR allows us
to talk about routing policies around cycles separately from
the networks where they can be embedded, and it allows
us to formulate routing policies that are the same across
destinations, both of which features we exploited in this
paper.

The ATR opens up the possibility of decomposing routing
policies into simpler modules and infer on the correctness of
routing vector protocols from the algebraic properties of the
modules and the way they are combined [41]. Our model of
BGP highlights this aspect. Routing policies realized with a
combination of BGP’s LOCAL-PREF and AS-PATH parame-
ters do not have special properties that would lead to an easy
identification of strictly absorbent cycles. The decomposition
of routing policies into those implemented with LOCAL-PREF
and those implemented with AS-PATH allowed us to equate
the correctness of BGP to the absorbency of cycles with
respect to the LOCAL-PREF routing policies alone. In turn,
as example, this allowed a straightforward analysis of the
role played by siblings in the correctness of inter-domain
routing.

Many researchers have looked into the relation between
routing policies and the behaviors they induce on routing
vector protocols, both in the SPP and in the ATR. Several
sufficient conditions for correctness of routing vector protocols
have been published, but non-trivial necessary conditions have
been much harder to find. A notable exception in the context
of the SPP is given by Cittadini et al. [42]. The authors analyze
the problem of correctness under filtering, previously posed
by Feamster et al. [43].7 This problem seeks conditions on the
routing policies that guarantee correctness of a routing vector
protocol for a given destination if nodes are allowed to change
their routing policies by arbitrarily filtering routes. Cittadini et
al. found that a routing vector protocol is correct under filtering
if and only if the problem instance does not have a dispute
reel, which is a certain type of circular dependency among
permitted paths at various nodes. The problem addressed in
the present paper is different. Routing policies are fixed and
correctness is required across all destinations. Strict-cycle-
absorbency is the sufficient and necessary condition for this
type of correctness, being the first such condition framed in
the ATR.

VIII. CONCLUSIONS

The operation of routing vector protocols is rather simple.
It consists of iterations of electing routes and extending routes.
This simplicity belies the difficulty in determining whether
or not routing vector protocols behave correctly for arbitrary
routing policies. Anomalous behaviors are diversified, but can
only occur in networks with cycles. Therefore, it is natural
to ask whether correctness of a routing vector protocol can
be equated to how routing policies are configured at the
nodes around the cycles of a network. We have shown that,
when routing policies are not differentiated by destination,

7In [42] and [43], the problem is called “safety under filtering.”

a routing vector protocol is correct if and only if the rout-
ing policies around every cycle in the network are strictly
absorbent.

Instantiating the equivalence between correctness and strict-
cycle-absorbency readily leads to results concerning concrete
routing policies. We exemplified with next-hop routing policies
and routing policies for sibling ASs of the Internet. Next-hop
routing policies always pay a price in connectivity. Sibling ASs
that exchange routes without altering their preference never
introduce oscillations into BGP.

APPENDIX

ABSORBENT CYCLES WITH ISOTONE LINKS

We prove Theorem 8. Recall that cycle C = u0u1 · · ·un−1

is absorbent if

∀α0,α1,...,αn−1 ∃0≤i<n αi ≺ L[uiui+1](αi+1)
∨ ∀0≤i<nαi = L[uiui+1](αi+1), (19)

where indexes are interpreted modulus n. We first show that
if C is absorbent, then α � L[uiCui](α) for every node ui

of C and every attribute α. Assign external attributes to all
nodes of C as follows: αi = α and

αi−k = L[ui−kCui](α), (20)

for 1 ≤ k < n. Thus, αi−k = L[ui−kui−k+1](αi−k+1).
Satisfaction of Condition (19) imposes that α = αi �
L[uiui+1](αi+1). Thus, we write

α � L[uiui+1](αi+1)
= L[uiui+1](L[ui+1Cui](α)) (from (20), k = n− 1)

= L[uiCui](α).

Note that isotonicity was not required in this part of the proof.
Next, we assume that all links are isotone and show that if

α � L[uiCui](α) for every node ui of C and every attribute α,
then C is absorbent. In fact, we prove the contrapositive
statement. If C is not absorbent, then there is an index i and
attributes αi−k , for 1 ≤ k < n, such that

αi−k � L[ui−kui−k+1](αi−k+1) (21)

and

αi � L[uiui+1](αi+1). (22)

We show by induction that αi−k � L[ui−kCui](αi), for
1 ≤ k < n. The base case is Inequality (21) with k = 1.
Using the isotonicity of link ui−(k+1)ui−k on the induction
hypothesis, we write

αi−(k+1) � L[ui−(k+1)ui−k](αi−k) (from (21))

� L[ui−(k+1)ui−k](L[ui−kCui](αi)) (isotonicity)

= L[ui−(k+1)Cui](αi),

thus proving the induction step. Using the isotonicity of link
uiui+1, we write

αi � L[uiui+1](αi+1) (from (22))

� L[uiui+1](L[ui+1Cui](αi)) (isotonicity)

= L[uiCui](αi).
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Therefore, node ui and attribute α = αi are such that α �
L[uiCui](α). Combining the two cases above, we conclude
that cycle C is absorbent if and only if α � L[uiCui](α) for
all nodes ui and attributes α.
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